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MPI-1

= MPIis a message-passing library interface standard.
— Specification, not implementation
— Library, not a language
— Classical message-passing programming model

= MPI-1 was defined (1994) by a broadly-based group of parallel
computer vendors, computer scientists, and applications developers.

— 2-year intensive process

= |mplementations appeared quickly and now MPI is taken for granted as
vendor-supported software on any parallel machine.

" Free, portable implementations exist for clusters and other
environments (MPICH, Open MPI)



MPI-2

= Same process of definition by MPI| Forum
= MPI-2 is an extension of MPI

— Extends the message-passing model.
e Parallel 1/O
e Remote memory operations (one-sided)
e Dynamic process management
— Adds other functionality
e C++ and Fortran 90 bindings
— similar to original C and Fortran-77 bindings
e External interfaces
e Language interoperability
e MPI interaction with threads



MPI-2 Implementation Status

=  Most parallel computer vendors now support MPI-2 on their machines

— Except in some cases for the dynamic process management functions,
which require interaction with other system software

= Cluster MPIs, such as MPICH and Open MPI, support most of MPI-2
including dynamic process management

=  QOur examples here have all been run on MPICH



MPI-3

= The latest official version of the MPI Standard is MPI 3.0, released two
days ago

= |n the afternoon we will discuss what’s new in MPI-3

Implementations are in progress. MPICH already supports parts of MPI-3.



Our Approach in this Tutorial

=  Example driven
— Structured data (Life)
— Unpredictable communication (pNeo)
— Passive target RMA (global arrays and MPI mutex)
= Show solutions that use the MPI-2 support for parallel I/O, RMA, and
hybrid programming
— Walk through actual code
= We assume familiarity with MPI-1



Regular Mesh Algorithms

Many scientific applications involve the solution of partial differential
equations (PDEs)
Many algorithms for approximating the solution of PDEs rely on
forming a set of difference equations

— Finite difference, finite elements, finite volume
The exact form of the difference equations depends on the particular

method
— From the point of view of parallel programming for these algorithms, the
operations are the same



Poisson Problem

To approximate the solution of the Poisson Problem V2u = f on the unit
square, with u defined on the boundaries of the domain (Dirichlet
boundary conditions), this simple 2nd order difference scheme is often
used:
— (U(x+h,y) - 2U(x,y) + U(x-h,y)) / h? +
(Ux,y+h) - 2U(x,y) + U(x,y-h)) / h? = f(x,y)

* Where the solution U is approximated on a discrete grid of points x=0, h, 2h, 3h,
..., (1/h)h=1, y=0, h, 2h, 3h, ... 1.

* To simplify the notation, U(ih,jh) is denoted U;;

This is defined on a discrete mesh of points (x,y) = (ih,jh), for a mesh
spacing “h”
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The Mesh

Each circle is a mesh point

Difference equation evaluated
at each point involves the four
neighbors

The red “plus” is called the
method’s stencil

Good numerical algorithms form
a matrix equation Au=f; solving
this requires computing By,
where B is a matrix derived
from A. These evaluations
involve computations with the
neighbors on the mesh.



Conway’s Game of Life

= |n this tutorial, we use Conway’s Game of Life as a simple example to
illustrate the program issues common to many codes that use regular
meshes, such as PDE solvers

— Allows us to concentrate on the MPI issues

=  Game of Life is a cellular automaton
— Described in 1970 Scientific American

— Many interesting behaviors; see:
e http://www.ibiblio.org/lifepatterns/october1970.html
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Rules for Life

= Matrix values A(i,j) initialized to 1 (live) or O (dead)

= |n each iteration, A(i,j) is set to
— 1 (live) if either
e the sum of the values of its 8 neighbors is 3, or
e the value was already 1 and the sum of its 8 neighborsis 2 or 3

— 0 (dead) otherwise

13



Implementing Life

= For the non-parallel version, we:

— Allocate a 2D matrix to hold state
e Actually two matrices, and we will swap them between steps

— Initialize the matrix
e Force boundaries to be “dead”
e Randomly generate states inside

— At each time step:
e Calculate each new cell state based on previous cell states (including neighbors)
e Store new states in second matrix
e Swap new and old matrices

14



Steps in Designing the Parallel Version

Start with the “global” array as the main object
— Natural for output — result we’re computing

= Describe decomposition in terms of global array
= Describe communication of data, still in terms of the global array

= Define the “local” arrays and the communication between them by
referring to the global array

15



Step 1: Description of Decomposition

= By rows (1D or row-block)
— Each process gets a group of adjacent rows
= Later we'll show a 2D decomposition

Rows

-

Columns
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Step 2: Communication

“Stencil” requires read access to data from neighbor cells

St

e
X

D18

We allocate extra space on each process to store neighbor cells

Use send/recv or RMA to update prior to computation

P

—

17



Step 3: Define the Local Arrays

= Correspondence between the local and global array

= “Global” array is an abstraction; there is no one global array allocated
anywhere

= Instead, we compute parts of it (the local arrays) on each process

= Provide ways to output the global array by combining the values on
each process (parallel I/0!)

18



Boundary Regions

In order to calculate next state of cells in edge rows, need data from

adjacent rows

Need to communicate
these regions at each
step

— First cut: use Isend
and Irecv

— Revisit with RMA later

19



Life Point-to-Point Code Walkthrough

= Points to observe in the code:
— Handling of command-line arguments
— Allocation of local arrays

— Use of a routine to implement halo exchange
e Hides details of exchange

matrix mdata

vy vy

Allows us to use matrix[row][col] to address elements

See mlife.c pp. 1-8 for code example.
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Note: Parsing Arguments

= MPI standard does not guarantee that command line arguments will be
passed to all processes.

— Process arguments on rank O

— Broadcast options to others
e Derived types allow one bcast to handle most args

— Two ways to deal with strings
e Big, fixed-size buffers
e Two-step approach: size first, data second (what we do in the code)

See mlife.c pp. 9-10 for code example.
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Point-to-Point Exchange

= Duplicate communicator to ensure communications do not conflict

— This is good practice when developing MPI codes, but is not required in this
code

— If this code were made into a component for use in other codes, the
duplicate communicator would be required

= Non-blocking sends and receives allow implementation greater
flexibility in passing messages

See mlife-pt2pt.c pp. 1-3 for code example.
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Parallel I/0 and Life
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Why MPI is a Good Setting for Parallel 1/0

= Writing is like sending and reading is like receiving.
= Any parallel I/O system will need:
— collective operations
— user-defined datatypes to describe both memory and file layout

— communicators to separate application-level message passing from |/O-
related message passing

— non-blocking operations

= |.e., lots of MPI-like machinery

24



What does Parallel I/0 Mean?

= At the program level:
— Concurrent reads or writes from multiple processes to a common file
= At the system level:
— A parallel file system and hardware that support such concurrent access
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Collective I/0 and MPI

= A critical optimization in parallel I/O

= All processes (in the communicator) must call the collective I/0
function

= Allows communication of “big picture” to file system
— Framework for I/O optimizations at the MPI-IO layer

= Basic idea: build large blocks, so that reads/writes in /O system will be
large
— Requests from different processes may be merged together

— Particularly effective when the accesses of different processes are
noncontiguous and interleaved

Small individual
requests

| .
— P
| -
>

— ==

Large collective
access

]

/
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Collective I/0 Functions

" MPI File write at all, etc.

— _allindicates that all processes in the group specified by the
communicator passed toMPI_File open will call this function

— _at indicates that the position in the file is specified as part of the call; this
provides thread-safety and clearer code than using a separate “seek” call

= Each process specifies only its own access information — the argument
list is the same as for the non-collective functions

27



Supporting Checkpoint/Restart

= For long-running applications, the cautious user checkpoints
= Application-level checkpoint involves the application saving its own
state
— Portable!
= A canonical representation is preferred
— Independent of number of processes

= Restarting is then possible

— Canonical representation aids restarting with a different number of
processes

28



Defining a Checkpoint

= Need enough to restart
— Header information

e Size of problem (e.g. matrix dimensions)
e Description of environment (e.g. input parameters)

— Program state
e Should represent the global (canonical) view of the data
= |deally stored in a convenient container
— Single file!
= |f all processes checkpoint at once, naturally a parallel, collective
operation

29



Life Checkpoint/Restart API

= Define an interface for checkpoint/restart for the row-block distributed
Life code
= Five functions:
— MLIFEIO_Init
— MLIFEIO_Finalize
— MLIFEIO_Checkpoint
— MLIFEIO_Can_restart
— MLIFEIO_Restart
= All functions are collective

=  Once the interface is defined, we can implement it for different back-
end formats

30



Life Checkpoint

" MLIFEIO Checkpoint (char *prefix,
int **matrix,
int rows,
int cols,
int iter,

MPI Info info);
= Prefix is used to set filename
= Matrix is a reference to the data to store
= Rows, cols, and iter describe the data (header)
= Info is used for tuning purposes (more later!)



Life Checkpoint (Fortran)

* MLIFEIO Checkpoint (prefix, matrix,
rows, cols, iter, info )
character* (*) prefix

integer rows, cols, iter
integer matrix (rows,cols)
integer info

= Prefix is used to set filename

= Matrix is a reference to the data to store

= Rows, cols, and iter describe the data (header)
= Infois used for tuning purposes (more later!)

32



Describing Data

Need to save this
region in the array

‘

matrix[1][0..cols+1]

matrix[myrows][0..cols+1]

= Lots of rows, all the same size

— Rows are all allocated as one big block
— Perfect for MPI_Type_ vector

MPI_Type_vector(count = myrows,
blklen = cols, stride = cols+2, MPI_INT, &vectype);

— Second type gets memory offset right (allowing use of MPI_BOTTOM in
MPI_File_write_all)

MPI_Type_hindexed(count=1, len =1,
disp = &matrix[1][1], vectype, &type);

See mlife-io-mpiio.c pg. 9 for code example.
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Describing Data (Fortran)

Need to save this
region in the array

d

Matrix(1,0:cols+1)

Matrix(myrows,0:cols+1)

= Lots of rows, all the same size
— Rows are all allocated as one big block

— Perfect for MPI_Type_vector

Call MPI_Type_vector(count = myrows,
blklen = cols, stride = cols+2, MPI_INTEGER, vectype, ierr )
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Life Checkpoint/Restart Notes

= MLIFEIO_Init

— Duplicates communicator to avoid any collisions with other communication
= MLIFEIO Finalize

— Frees the duplicated communicator

= MLIFEIO_Checkpoint and _Restart
— MPI_Info parameter is used for tuning |/O behavior

Note: Communicator duplication may not always be necessary, but is good
practice for safety

See mlife-io-mpiio.c pp. 1-8 for code example.
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MPI-10 Life Checkpoint Code Walkthrough

= Points to observe
— Use of a user-defined MPI datatype to handle the local array

— Use of MPI_Offset for the offset into the file

e “Automatically” supports files larger than 2GB if the underlying file system
supports large files

— Collective 1/0O calls
e Extra data on process 0

See mlife-io-mpiio.c pp. 1-2 for code example.
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Life MPI-1I0 Checkpoint/Restart

= We can map our collective checkpoint directly to a single collective
MPI-IO file write: MPI_File_write_at_all
— Process 0 writes a little extra (the header)

= Onrestart, two steps are performed:

— Everyone reads the number of rows and columns from the header in the
file with MPI_File_read_at_all

e Sometimes faster to read individually and bcast (see later example)

— If they match those in current run, a second collective call used to read the
actual data

e Number of processors can be different

See mlife-io-mpiio.c pp. 3-6 for code example.
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Describing Header and Data

= Datais described just as before

= Create a struct wrapped around this to describe the header as well:
— no. of rows
— no. of columns
— Iteration no.

— data (using previous type)

See mlife-io-mpiio.c pp. 7 for code example.
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Placing Data in Checkpoint

File Layout

s _w
. gl [N NES .
-, NS N
2 (BN ~
4 N APEREN N
1 \ N ~ ~o N

Rows Columns lteration PO

P1

P2

P3

Global Matrix

Note: We store the matrix in global, canonical order with no ghost cells.

See mlife-io-mpiio.c pp. 9 for code example.
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The Other Collective 1/0 Calls

" MPI File seek

= MPI File read all -~ like Unix I/O

" MPI File write all /

= MPI File read at all | combine seek and I/O
* MPI File write at all J for thread safety

= MPI File read ordered : :
— — — use shared file pointer

" MPI File write ordered
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Independent 1I/0 with MPI-IO
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Writing to a File

" Use MPI File write orMPI File write at

= UseMPI MODE WRONLY or MPI MODE RDWR as the flags to
MPI File open

= If the file doesn’t exist previously, the flag MPI_MODE CREATE must
also be passedto MPI File open

= We can pass multiple flags by using bitwise-or ‘|’ in C, or addition ‘+” in
Fortran
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Ways to Access a Shared File

u MPI_File_seek

= MPI File read r like Unix 1/O
= MPI File write 3
= MPI File read at | combine seek and I/O

* MPI File write at for thread safety

" MPI File read shared
u MPI_File_write_shared

use shared file pointer

%{_J\
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Using Explicit Offsets

#include “mpi.h”
MPI Status status;
MPI_File fh;

MPI Offset offset;

MPI File open(MPI _COMM WORLD, “/pfs/datafile”,
MPI_MODE RDONLY, MPI_ INFO NULL, &fh)

nints = FILESIZE / (nprocs*INTSIZE) ;

offset = rank * nints * INTSIZE;

MPI File read at(fh, , buf, nints, MPI INT,

&status) ;
MPI Get count(&status, MPI INT, &count );
printf ( “process %d read %d ints\n”, rank, count );

MPI File close(&fh);

44



Using Explicit Offsets (Fortran)

include 'mpif.h’

integer status (MPI_STATUS SIZE)

call MPI FILE OPEN(MPI COMM WORLD, '/pfs/datafile',6 &

MPI MODE RDONLY, MPI INFO NULL, fh, ierr)
nints FILESIZE / (nprocs*INTSIZE)
offset = rank * nints * INTSIZE
call MPI_FILE READ AT (fh, , buf, nints,

MPI INTEGER, status, ierr)

call MPI GET COUNT (status, MPI INTEGER, count, ierr)
print *, 'process ', rank, 'read ', count, 'integers'

call MPI_FILE CLOSE (fh, ierr)
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Why Use Independent I/0?

= Sometimes the synchronization of collective calls is not natural

=  Sometimes the overhead of collective calls outweighs their benefits
— Example: very small I/O during header reads
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Noncontiguous I/0 in File

= Each process describes the part of the file that it is responsible for
— This is the “file view”
— Described in MPI with an offset (useful for headers) and an MPI_Datatype

= Only the part of the file described by the file view is visible to the
process; reads and writes access these locations

= This provides an efficient way to perform noncontiguous accesses
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Noncontiguous Accesses

= Common in parallel applications
= Example: distributed arrays stored in files

= A big advantage of MPI I/O over Unix I/O is the ability to specify
noncontiguous accesses in memory and file within a single function call
by using derived datatypes

= Allows implementation to optimize the access

= Collective I/O combined with noncontiguous accesses yields the highest
performance
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File Views

= Specified by a triplet (displacement, etype, and filetype) passed to
MPI File set view
= displacement = number of bytes to be skipped from the start of the file
— e.g., to skip a file header

= etype = basic unit of data access (can be any basic or derived datatype)

filetype = specifies which portion of the file is visible to the process

49



A Simple Noncontiguous File View Example

B etype = MPLINT

- filetype = two MPI_INTs followed by
a gap of four MPI_INTs

head of file FILE

“ 1] 1]

< > > >

displacement filetype filetype and so on...
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Noncontiguous File View Code

MPI Aint 1lb, extent;
MPI Datatype etype, filetype, contig;
MPI Offset disp;

MPI Type contiguous (2, MPI_ INT, é&contigq);

l1b = 0; extent = 6 * sizeof(int) ;

MPI Type create resized(contig, 1lb, extent, &filetype);
MPI Type commit (&filetype)

disp = 5 * sizeof(int); etype = MPI INT;

MPI File open(MPI COMM WORLD, "/pfs/datafile",
MPI MODE CREATE | MPI MODE RDWR, MPI INFO NULL, &fh);
MPI File set view(fh, disp, etype, filetype, "native",
MPI INFO NULL) ;
MPI File write(fh, buf, 1000, MPI INT, MPI STATUS IGNORE) ;
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Noncontiguous File View Code (Fortran)

integer (kind=MPI_ ADDRESS KIND) 1lb, extent
integer etype, filetype, contig
integer (kind=MPI OFFSET KIND) disp

call MPI Type contiguous (2, MPI INTEGER, contig, ierr)

call MPI Type size( MPI_ INTEGER, sizeofint, ierr )

l1b = 0

extent = 6 * sizeofint

call MPI Type create resized(contig, lb, extent, filetype, ierr)
call MPI Type commit(filetype, ierr)

disp = 5 * sizeof (int)

etype = MPI INTEGER

call MPI File open(MPI COMM WORLD, "/pfs/datafile", &
MPI MODE CREATE + MPI MODE RDWR, MPI INFO NULL, fh, ierr)
call MPI F11e set view(fh, dlsp, etype, flletype, "native", &
MPI_INFO NULL, ierr)
call MPI File write(fh, buf, 1000, MPI_ INTEGER, MPI_STATUS IGNORE)
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Tuning MPI-IO
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General Guidelines for Achieving High I/0 Performance

= Buy sufficient I/O hardware for the machine

= Use fast file systems, not NFS-mounted home directories
= Do not perform |/O from one process only

= Make large requests wherever possible

= For noncontiguous requests, use derived datatypes and a single
collective I/O call
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Using the Right MPI-IO Function

= Any application as a particular “I/O access pattern” based on its I/O
needs

= The same access pattern can be presented to the I/O system in
different ways depending on what 1I/O functions are used and how

= |n our SCI98 paper, we classify the different ways of expressing |/O
access patterns in MPI-10 into four levels: level O — level 3

= We demonstrate how the user’s choice of level affects performance
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Example: Distributed Array Access

PO| P1| P2 | P3

Id_?srtgriebsgzy Each square represents
among 16 P41 PS5 | P6 | P/ a subarray in the memory
of a single process

Processes P8 | P9 [P10|P11

P12|P13|P14|P15

Access Pattern in the file
| p0| Pt| P2| P3|/ POl PL| P[]

| p4| p5| P6| P7| P4l P5| PG|

| 8| po| P10l P11| P8| P9 |lPIO]

|p12 | P13 | P14 | P15 | P12 | P13 | P14
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Level-0 Access

= Each process makes one independent read request for each row in the
local array (as in Unix)

MPI File open(..., file, ..., &fh);
for (i=0; i<n local rows; i++) {
MPI File seek(fh, ...);
MPI File read(fh, &(A[i][O0]), ...):
}
MPI File close(&fh);
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Level-1 Access

= Similar to level 0, but each process uses collective I/0 functions

MPI File open(MPI COMM WORLD, file, ..., &fh);
for (i=0; i<n local rows; i++) {

MPI File seek(fh, ...);

MPI File read all(fh, &(A[i][O0]), ...):
}

MPI File close(&fh);

58



Level-2 Access

= Each process creates a derived datatype to describe the noncontiguous
access pattern, defines a file view, and calls independent I/O functions

MPI Type create subarray(..., &subarray, ...);
MPI Type commit (&subarray);

MPI File open(..., file, ..., &fh);
MPI File set view(fh, ..., subarray, ...);
MPI File read(fh, A, ...);

MPI File close(&fh);
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Level-3 Access

= Similar to level 2, except that each process uses collective I/O functions

MPI Type create subarray(..., &subarray, ...);
MPI Type commit (&subarray) ;

MPI File open(MPI COMM WORLD, file,..., &fh);
MPI File set view(fh, ..., subarray, ...);

MPI File read all(fh, A, ...);

MPI File close(&fh);
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Level-0 Access (Fortran)

Each process makes one independent read request for each row in the
local array (as in Unix)

call MPI File open(..., file, ...,fh,ierr)
do i=1l, n local rows
call MPI File seek(fh, ..., ierr)

call MPI File read(fh, a(i,0),...,ierr)
enddo
call MPI File close(fh, ierr)
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Level-1 Access (Fortran)

= Similar to level 0, but each process uses collective I/0 functions

call MPI File open(MPI COMM WORLD, file, &
., fh, ierr)

do i=1l,n local rows

call MPI File seek(fh, ..., ierr)
call MPI File read all(fh, a(i,0), ...,&
ierr)
enddo

call MPI File close(fh,ierr)
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Level-2 Access (Fortran)

= Each process creates a derived datatype to describe the noncontiguous
access pattern, defines a file view, and calls independent I/O functions

call MPI Type create subarray(..., &
subarray, ..., ierr)

call MPI Type commit (subarray, ierr)

call MPI File open(..., file,..., fh, ierr)

call MPI File set view(fh, ..., subarray, &
., lerr)
call MPI File read(fh, A, ..., 1ierr)

call MPI File close(fh, ierr)
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Level-3 Access (Fortran)

= Similar to level 2, except that each process uses collective 1/O functions

call MPI Type create subarray(..., &
subarray, ierr )

call MPI Type commit (subarray, ierr )
call MPI File open(MPI COMM WORLD, file, &
., fh, ierr )
call MPI File set view(fh, ..., subarray, &
., lerr )
call MPI File read all(fh, A, ..., ierr)

call MPI File close(fh,ierr)
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The Four Levels of Access

Level O
Level 1
Level 2

7
:
|
|
|
|
|
|
|
|
|
|
|
:
:
|
|
i
ﬁ—: Level 3
|
|

<
doedg A1

Processes

3
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Optimizations

= Given complete access information, an implementation can perform
optimizations such as:

— Data Sieving: Read large chunks and extract what is really needed
— Collective I/0: Merge requests of different processes into larger requests
— Improved prefetching and caching
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Performance Instrumentation

We instrumented the source code of our MPI-10 implementation
(ROMIO) to log various events (using the MPE toolkit from MPICH2)

We ran a simple 3D distributed array access code written in three ways:
— POSIX (level 0)
— data sieving (level 2)
— collective 1/0 (level 3)

The code was run on 32 nodes of the Jazz cluster at Argonne with
PVFS-1 as the file system

We collected the trace files and visualized them with Jumpshot
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Collective I/0

The next slide shows the trace for the collective 1/O case
Note that the entire program runs for a little more than 1 sec
Each process does its entire |/O with a single write or read operation

Data is exchanged with other processes so that everyone gets what
they need

Very efficient!
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Collective I/0
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Data Sieving

The next slide shows the trace for the data sieving case
Note that the program runs for about 5 sec now

Since the default data sieving buffer size happens to be large enough,
each process can read with a single read operation, although more data
is read than actually needed (because of holes)

Since PVFS doesn’t support file locking, data sieving cannot be used for
writes, resulting in many small writes (1K per process)
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Data Sieving
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Posix 1I/0

The next slide shows the trace for Posix I/0O
Lots of small reads and writes (1K each per process)

The reads take much longer than the writes in this case because of a
TCP-incast problem happening in the switch

Total program takes about 80 sec
Very inefficient!
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Posix 1/0
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Bandwidth Results

3D distributed array access written as levels 0, 2, 3

Five different machines
— NCSA Teragrid IA-64 cluster with GPFS and MPICH2
— ASC Purple at LLNL with GPFS and IBM’s MPI
— Jazz cluster at Argonne with PVFS and MPICH2
— Cray XT3 at ORNL with Lustre and Cray’s MPI
— SDSC Datastar with GPFS and IBM’s MPI
Since these are all different machines with different amounts of 1/0

hardware, we compare the performance of the different levels of access
on a particular machine, not across machines
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Distributed Array Access: Read Bandwidth

Array size: 512 x 512 x 512

10000 - ElLevel 0

Blevel2
BlLevel 3

Mbytes/sec

NCSA ASC Purple Argonne ORNL Cray SDSC
Cluster Cluster XT3 Datastar

128 procs 256 procs 32 procs 256procs 128 procs

Thanks to Weikuan Yu, Wei-keng Liao, Bill Loewe, and Anthony Chan for these results.
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Distributed Array Access: Write Bandwidth

Array size: 512 x 512 x 512

10000 -
ElLevelO
Blevel 2
=
1000 Level 3
(8]
)
K%
S 100
=
el
=
10
1

NCSA ASC Purple Argonne ORNL Cray SDSC
Cluster Cluster XT3 Datastar

128 procs 256 procs 32 procs 256procs 128 procs
Thanks to Weikuan Yu, Wei-keng Liao, Bill Loewe, and Anthony Chan for these results.
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Passing Hints

= MPI-2 defines a new object, MPI Info
= Provides an extensible list of key=value pairs

= Usedin |/O, One-sided, and Dynamic to package variable,
optional types of arguments that may not be standard
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Passing Hints to MPI-IO

MPI_Info info;
MPI_Info_create(&info);

/* no. of I/0 devices to be used for file striping */
MPI Info set(info, "striping factor", "4");

/* the striping unit in bytes */
MPI Info set(info, "striping unit", "65536");

MPI File open(MPI_ COMM WORLD, "/pfs/datafile",
MPI MODE CREATE | MPI MODE RDWR, info, &fh);

MPI Info free(&info);
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Passing Hints to MPI-IO (Fortran)

integer info
call MPI Info create(info, ierr)

! no. of I/0 devices to be used for file striping
call MPI Info set(info, "striping factor", "4”, ierr )

! the striping unit in bytes
call MPI Info set(info, "striping unit", "65536”, ierr )

call MPI File open(MPI COMM WORLD, "/pfs/datafile", &
MPI MODE CREATE + MPI MODE RDWR, info, &

fh, ierf_)

call MPI Info free( info, ierr )

v
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Examples of Hints (used in ROMIO)

" striping unit )

" striping factor > MPI-2 predefined hints
" cb buffer size

" cb nodes 7
* ind rd buffer size New Algorithm Parameters
" ind wr buffer size
" start iodevice A
" pfs_svr but > Platform-specific hints
" direct read

u direct_wri te /
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ROMIO Hints and PVFS

=  Controlling PVFS
striping factor - size of “strips” on I/O servers
striping unit - number of I/O servers to stripe across
start iodevice - which /O server to start with

= Controlling aggregation
cb config list - list of aggregators
cb_nodes - number of aggregators (upper bound)

®= Tuning ROMIO optimizations
romio cb read, romio cb write - aggregation on/off

romio ds read, romio ds write - data sieving on/off
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Aggregation Example

= Cluster of SMPs

= One SMP box has fast connection to disks

= Datais aggregated to processes on single box

=  Processes on that box perform 1I/0 on behalf of the others

P2|[P3]| -

600012
80005
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Summary of I/0 Tuning

= MPI /O has many features that can help users achieve high
performance

= The most important of these features are the ability to specify
noncontiguous accesses, the collective I/0 functions, and the ability to
pass hints to the implementation

=  Users must use the above features!

= |n particular, when accesses are noncontiguous, users must create
derived datatypes, define file views, and use the collective I/0 functions
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Common Errors in Using MPI-IO

Not defining file offsets asMPI OffsetinCand integer

(kind=MPI OFFSET KIND) in Fortran (or perhaps integer*8
in Fortran 77)

In Fortran, passing the offset or displacement directly as a constant
(e.g., 0) in the absence of function prototypes (F90 mpi module)

Using darray datatype for a block distribution other than the one
defined in darray (e.g., floor division)

filetype defined using offsets that are not monotonically
nondecreasing, e.g., 0, 3, 8, 4, 6.
(can occur in irregular applications)
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MPI and Multicore
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MPI and Threads

MPI describes parallelism between processes (with separate address
spaces)

Thread parallelism provides a shared-memory model within a process
OpenMP and Pthreads are common models

— OpenMP provides convenient features for loop-level parallelism. Threads
are created and managed by the compiler, based on user directives.

— Pthreads provide more complex and dynamic approaches. Threads are
created and managed explicitly by the user.
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Programming for Multicore

= Almost all chips are multicore these days

=  Today’s clusters often comprise multiple CPUs per node sharing
memory, and the nodes themselves are connected by a network

=  Common options for programming such clusters
— All MPI

e Use MPI to communicate between processes both within a node and across
nodes

e MPI implementation internally uses shared memory to communicate within a
node

— MPI + OpenMP
e Use OpenMP within a node and MPI across nodes
— MPI + Pthreads

e Use Pthreads within a node and MPI across nodes

=  The latter two approaches are known as “hybrid programming”
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MPI’s Four Levels of Thread Safety

= MPI defines four levels of thread safety. These are in the form of commitments the
application makes to the MPI implementation.
— MPI_THREAD _SINGLE: only one thread exists in the application

— MPI_THREAD FUNNELED: multithreaded, but only the main thread makes MPI
calls (the one that called MPI_Init or MPI_Init_thread)

— MPI_THREAD_SERIALIZED: multithreaded, but only one thread at a time makes
MPI calls

— MPI_THREAD MULTIPLE: multithreaded and any thread can make MPI calls at

any time (with some restrictions to avoid races — see next slide)

= MPI defines an alternative to MPI_Init
— MPI_Init_thread(requested, provided)

e Application indicates what level it needs; MPI implementation returns the
level it supports
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Specification of MPI_THREAD_MULTIPLE

When multiple threads make MPI calls concurrently, the outcome will
be as if the calls executed sequentially in some (any) order

Blocking MPI calls will block only the calling thread and will not prevent
other threads from running or executing MPI functions

It is the user's responsibility to prevent races when threads in the same
application post conflicting MPI calls
— e.g., accessing an info object from one thread and freeing it from another
thread
User must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among
threads

— e.g., cannot call a broadcast on one thread and a reduce on another thread
on the same communicator
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Threads and MPI in MPI-2

= Animplementation is not required to support levels higher than
MPI_THREAD_SINGLE; that is, an implementation is not required to be
thread safe

= A fully thread-safe implementation will support MPI_THREAD_ MULTIPLE

= A program that calls MPI_Init (instead of MPI_Init_thread) should assume
that only MPI_THREAD_ SINGLE is supported
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The Current Situation

= All MPl implementations support MPI_THREAD_SINGLE (duh).

= They probably support MPI_THREAD FUNNELED even if they don’t admit
it.

— Does require thread-safe malloc
— Probably OK in OpenMP programs

= Many (but not all) implementations support THREAD MULTIPLE
— Hard to implement efficiently though (lock granularity issue)

= “Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED
— So don’t need “thread-safe” MPI for many hybrid programs
— But watch out for Amdahl’s Law!
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What MPI’s Thread Safety Means in the Hybrid MPI
+0OpenMP Context

MPI_THREAD_SINGLE

— There is no OpenMP multithreading in the program.
MPI_THREAD_FUNNELED

— All of the MPI calls are made by the master thread. i.e. all MPI calls are

e Qutside OpenMP parallel regions, or

e |nside OpenMP master regions, or

e Guarded by call to MPI_Is_thread_main MPI call.
— (same thread that called MPI_Init_thread)

MPI_THREAD_SERIALIZED
#pragma omp parallel

#pragma omp single
{

...MPI calls allowed here...

}
MPI_THREAD_MULTIPLE

— Any thread may make an MPI call at any time
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\ |
Visualizing the Behavior of Hybrid Programs

= Jumpshot is a logfile-based parallel program visualizer. Uses MPI profiling
interface.

= Recently it has been augmented in two ways to improve scalability.

— Summary states and messages are shown as well as individual states and
messages.
e Provides a high-level view of a long run.

e SLOG2 logfile structure allows fast interactive access (jumping, scrolling, and
zooming) for large logfiles.
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Jumpshot and Multithreading

= Newest additions are for multithreaded and hybrid programs that use
Pthreads

— Separate timelines for each thread id
— Support for grouping threads by communicator as well as by process
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Using Jumpshot with Hybrid MPI+OpenMP
Programs

= SLOG2/Jumpshot needs two properties of the OpenMP implementation
that are not guaranteed by the OpenMP standard
— OpenMP threads must be Pthreads

e Otherwise, the locking in the logging library (which uses Pthread locks) necessary
to preserve exclusive access to the logging buffers would need to be modified

— These Pthread ids must be reused (threads are “parked” when not in use)

e Otherwise Jumpshot would need zillions of time lines
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Three Platforms for Hybrid Programming
Experiments

= Linux cluster
— 24 nodes, each with two Opteron dual-core processors, 2.8 Ghz each
— Intel 9.1 Fortran compiler
— MPICH2-1.0.6, which has MPI_THREAD_MULTIPLE
— Multiple networks; we used GigE
= |BM Blue Gene/P
— 40,960 nodes, each consisting of four PowerPC 850 MHz cores
— XLF 11.1 Fortran cross-compiler
— IBM’s MPI V1IR1M2 (based on MPICH2), has MPI_THREAD_MULTIPLE
— 3D Torus and tree networks
= SiCortex SC5832
— 972 nodes, each consisting of six MIPS 500 MHz cores
— Pathscale 3.0.99 Fortran cross-compiler

— SiCortex MPI implementation based on MPICH2, has MPI_THREAD FUNNELED
— Kautz graph network
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Experiments

= Basic
— Proved that necessary assumptions for our tools hold
e OpenMP threads are Pthreads

e Thread id’s are reused
= NAS Parallel Benchmarks
— NPB-MZ-MPI, version 3.1
— Both BT and SP
— Two different sizes (W and B)
— Two different modes (“MPI everywhere” and OpenMP/MPI)

e With four nodes on each machine

= Demonstrated satisfying level of portability of programs and tools across
three quite different hardware/software environments
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It Might Not Be Doing What You Think

An early run:
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Nasty interaction between the environment variables
OMP_NUM_THREADS and NPB_MAX_THREADS
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More Like What You Expect

= BT class B on 4 BG/P nodes, using OpenMP on each node

Lowest / Max. Depth|4

@ world_rank
@ thread

TimelLine : bt_B_np4x4_bgp.slog2 <Process-Thread View>

Zoom Level Global Min Time View Init Time Zoom Focus Time View Final Time
8 0.0001652659 76.5326630871 76.9326969552 77.3327306391

Global Max Time Time Per Pixel
153.7798645024 0.0010127438

Time (seconds)
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MPI Everywhere

= BT class B on 4 BG/P nodes, using 16 MPI processes

TimeLine : bt_B_np16x1_bgp.slog2 <Process View>

Lowest / Max. Depth|4|Zoom Level Global Min Time View Init Time Zoom Focus Time View Final Time Global Max Time Time Per Pixel

7 0.0001648247 645704268517 64.9616400564 65.3528533268 137.9960233541 0.001065976

| iy
|

CumulativeExc...| w [

| »
@ world_rank

[«] Iv] |4

64.60 64.70 64.80 64.90 65.00 65.10 65.20
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Observations on Experiments

Experiment Cluster BG/P SiCortex
Bt-mz.W.16x1 1.84 9.46 20.60
Bt-mz-W.4x4 0.82 3.74 11.26
Sp-mz.W.16x1 0.42 1.79 3.72
Sp-mz.W.4x4 0.78 3.00 7.98
Bt-mz.B.16.1 24.87 113.31 257.67
Bt-mz.B.4x4 27.96 124.60 399.23
Sp-mz.B.16x1 21.19 70.69 165.82
Sp-mz.B.4x4 24.03 81.47 246.76
Bt-mz.B.24x1 241.85
Bt-mz.B.4x6 337.86
Sp-mz.B.24x1 127.28
Sp-mz.B.4x6 211.78

Time in seconds

On the small version of BT (W), hybrid was better

For SP and size B problems, MPI everywhere is better
On SiCortex, more processes or threads are better than fewer
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Observations

This particular benchmark has been studied much more deeply elsewhere

— Rolf Rabenseifner, “Hybrid parallel programming on HPC platforms,”
Proceedings of EWOMP’03.

— Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using OpenMP:
Portable Shared Memory Parallel Programming, MIT Press, 2008.

Adding “hybridness” to a well-tuned MPI application is not going to speed
it up. So this NPB study doesn’t tell us much.

More work is needed to understand the behavior of hybrid programs and
what is needed for future application development.
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Factors Affecting MPI+OpenMP Performance
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Myths About the MPI + OpenMP Hybrid Model

1. Never works
. Examples from FEM assembly, others show benefit

2.  Always works

. Examples from NAS, EarthSim, others show MPI everywhere often as fast
(or faster!) as hybrid models
3. Requires a special thread-safe MPI
. In many cases does not; in others, requires a level defined in MPI-2
4, Harder to program
. Harder than what?
. Really the classic solution to complexity - divide problem into separate
problems

. 10000-fold coarse-grain parallelism + 100-fold fine-grain parallelism gives
1,000,000-fold total parallelism
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Special Note

Because neither 1 nor 2 are true, and 4 isn't entirely false, it is important
for applications to engineer codes for the hybrid model. Applications
must determine their:

— Memory bandwidth requirements

— Memory hierarchy requirements

— Load Balance

Don't confuse problems with getting good performance out of OpenMP
with problems with the Hybrid programming model

See Using OpenMP by Barbara Chapman,
Gabriele Jost and Ruud van der Pas,
Chapters 5 and 6, for programming
OpenMP for performance

— See pages 207-211 where they discuss the
hybrid model
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Some Things to Watch for in OpenMP

= No standard way to manage memory affinity

“First touch” (have intended “owning” thread perform first access) provides
initial static mapping of memory
e Next touch (move ownership to most recent thread) could help
— No portable way to reassign affinity -- reduces the effectiveness of OpenMP
when used to improve load balancing.
= Memory model can require explicit “memory flush” operations
— Defaults allow race conditions

— Humans notoriously poor at recognizing all races
e |t only takes one mistake to create a hard-to-find bug

106



Some Things to Watch for in MPI + OpenMP

= No interface for apportioning resources between MPIl and OpenMP

— On an SMP node, how many MPI processes and how many OpenMP Threads?
e Note the static nature assumed by this question

— Note that having more threads than cores is important for hiding latency
e Requires very lightweight threads
=  Competition for resources
— Particularly memory bandwidth and network access

— Apportionment of network access between threads and processes is also a
problem, as we’ve already seen.
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Where Does the MPI + OpenMP Hybrid

Model Work Well?

Compute-bound loops
Fine-grain parallelism
Load balancing
Memory bound loops
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Compute-Bound Loops

= Loops that involve many operations per load from memory
— This can happen in some kinds of matrix assembly, for example.
— “Life” update partially compute bound (all of those branches)
— Jacobi update not compute bound
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Fine-Grain Parallelism

Algorithms that require frequent exchanges of small amounts of data

E.g., in blocked preconditioners, where fewer, larger blocks, each
managed with OpenMP, as opposed to more, smaller, single-threaded
blocks in the all-MPI version, gives you an algorithmic advantage (e.g.,
fewer iterations in a preconditioned linear solution algorithm).

Even if memory bound
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Load Balancing

Where the computational load isn't exactly the same in all threads/
processes; this can be viewed as a variation on fine-grained access.

More on this later (OpenMP currently not well-suited, unfortunately. An
option is to use Pthreads directly.)
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Memory-Bound Loops

= Where read data is shared, so that cache memory can be used more
efficiently.
= Example: Table lookup for evaluating equations of state

— Table can be shared
— If table evaluated as necessary, evaluations can be shared
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Where is Pure MPI Better?

=  Trying to use OpenMP + MPI on very regular, memory-bandwidth-bound
computations is likely to lose because of the better, programmer-enforced
memory locality management in the pure MPI version.

= Another reason to use more than one MPI process --- if a single process
(or thread) can't saturate the interconnect, then use multiple
communicating processes or threads.
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Locality is Critical

= Placement of processes and threads is critical for performance

— Placement of processes impacts use of communication links; poor placement
creates more communication

— Placement of threads within a process on cores impacts both memory and
intranode performance

e Threads must bind to preserve cache
e In multi-chip nodes, some cores closer than others — same issue as processes

= MPI has limited, but useful, features for placement (covered next)
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Importance of ordering processes/threads
within a multichip node

= 2x4 processes in a mesh

= How should they be mapped onto
this single node?

= Round robin (by chip)?

— Labels are coordinates of process

in logical computational mesh
— Results in 3x interchip

communication than the natural
~ 7 ? ~ order

— Same issue results if thereis 1
process with 4 threads on each
chip, or 1 process with 8 threads

N _\_ _é o on the node
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Managing Thread/Process Affinity

= No portable way to control
— Hwloc provides a solution for Unix-like systems

— Most systems provide some way to control, at least from command line when
processes are started
e Numactl, aprun, ...

= Default is usually inappropriate for HPC
— Assumes threads do little sharing or reuse of data
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Overhead in Managing Threads

Depends on
— the number of times parallel regions are entered
— the number and size of private data structures
— the cost of the synchronization mechanism

= Some implementations are not able to handle the single threaded case
well:

— or example, on Origin 2000 (250 MHz R10000)

= sample program Jacobi (from OpenMP web site) takes
— 81 seconds when run on single OpenMP thread
— 62 seconds when compiled without OpenMP

= gscales w.r.t. the former
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MP1/0penMP in PETSc-FUN3D

= Onlyin the flux evaluation phase as it is not memory bandwidth bound

— @Gives the best execution time as the number of nodes increases because the
subdomains are chunkier as compared to pure MPI case

MPI/OpenMP MPI
Nodes
1 Thr | 2 Thr | 1 Proc | 2 Proc
256 483s | 261s | 456s | 258s
2560 76s 39s 72s 45s
3072 66s 33s 62s 40s
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Hybrid Model Options

" Fine grain model:
— Program is single threaded except when actively using multiple threads, e.g.,
for loop processing

— Pro:
e Easily added to existing MPI program

— Con:
e Adds overhead in creating and/or managing threads
e Locality and affinity may be an issue (no guarantees)
e Amdahl’s Law problem — serial sections limit speedup

= Coarse grain model
— Majority of program runs within “omp parallel”
— Pro:
e Lowers overhead of using threads, including creation, locality, and affinity

e Promotes a more parallel coding style
— Con:
e More complex coding, easier to introduce race condition errors
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Hybrid Version of Life Example
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Using OpenMP with MPI in Life Example

= Using OpenMP in Life:
— ldea: Parallelize the “next state” loop
— Options include:
e Only parallelize that loop (see sweepomp?2.c)
e Parallelize the outer iteration (over generations) (see sweepompl.c)
e Overlap MPI communication and computation in threads (see sweepomp3.c)
— Performance issues include:
e Encourage data locality by threads
e Scheduling how much and how often work is done by each thread
— MPI calls serialized
e Could be funneled through main thread
e Could use task parallelism (some threads do MPI, some do computation)
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Main Program with OpenMP

= No changes required compared to single-threaded MPI program!

= However, for performance, we may need to have each thread “claim” the
memory that it will work on
— Uses the “first touch” approach — a thread that uses data first (by cache line or
page) gets ownership.

e No guarantee — “first touch” is not part of the OpenMP standard and may be
overridden by other policies

e Suitable only when the “first touch” is applied to the same memory that the thread
will use

— We use an initialization code within a “USE_FIRST_TOUCH” CPP ifdef to
implement first touch

— Note also that if a single thread performs initialization, that thread will
effectively be the “first touch” owner, with possibly severe performance
consequences

See mlifeomp.c for code example.
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Implementing the Sweep

=  Much the same as the single-threaded version

= Quter loop is declared as a parallel section

— Avoids overhead of starting (or unparking) threads each time the nextstate

loop is executed

= One thread (any thread) executes the MPI halo exchange

= All threads wait for that exchange to complete

= Nextstate loop is exactly the same as the first touch loop

Otherwise we won’t achieve the desired memory locality

= This example is good but not optimal

No thread parallelism while MPI halo exchange takes place

OpenMP schedule for loop may not take OS/runtime noise or other source of
compute power imbalance into account

First touch may not match memory hierarchy

Does not address process/thread placement or binding
e OpenMP provides no standard mechanism

See sweepomp1.c for code example.
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Implementing the Sweep: The Simple Version

= |f starting/unparking threads is not a bottleneck, this simpler code can be
used
= Asinsweepompl.c, Nextstate loop is exactly the same as the first touch
loop
— Otherwise we won’t achieve the desired memory locality

= All other issues remain

See sweepomp2.c for code example.
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Implementing the Sweep: Adding
Communication/Computation Overlap

= Like sweepompl.c, except splits the update into two steps:
— Step 1: Threads handle “interior” of mesh — all points that do not require halo
information
e Note that there is no omp barrier after the omp single for the halo exchange

— Step 2: After an omp barrier, complete the update for all cells that involve
halo information
= As written, unlikely to be effective
— The distribution of work is uneven; thus a static schedule will be inefficient
— Use runtime scheduling

e Dynamic or guided available in OpenMP

e However, usually not as efficient as static (default) scheduling; extra overhead can
reduce benefit of threads

= Diagnosing performance issues with OpenMP can be tricky. Fortunately,
tools exist that work with MPI+OpenMP programs

See sweepomp3.c for code example.
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MPI + OpenACC (for accelerators)
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OpenACC

= OpenACCis an API for programming systems with attached accelerators
such as GPUs

= Consists of a set of compiler directives (that can be used in C, C++, or
Fortran) to specify loops and regions of code to be offloaded from a host
CPU to an attached accelerator

= Higher level than CUDA or OpenCL

= Can be used with MPI similar to OpenMP

— Like OpenMP, it provides an orthogonal description of parallelism; in this case,
the parallelism of the accelerator

= Requires compiler support (currently rather spotty)
= More information: www.openacc.org



OpenMP and OpenACC

Key Differences

OpenMP is relatively mature, though continues to evolve
OpenACC is very new; both the language and the devices it wishes to control
continue to change

e Compilers are also immature, so things that should work may not

OpenMP intended for shared memory; expects hardware support for single
address space*

OpenACC intended for attached devices with their own memory; provides
illusion of uniformity. Also hopes to supplant/integrate with OpenMP (so can
be used for multicore CPUs without an accelerator)



OpenMP and OpenACC

= Key similarities
— Primarily directives added to C/C++/Fortran; some routines (with same

problem in mixed C/Fortran programs on some platforms, as names are
identical but calling sequences aren’t)

— Performance requires providing additional information about variable use to
the compiler

e OpenMP — private
e OpenACC - also copy to/from host/device
— Pragmatic rather than elegant approach

— Regular code more likely to perform well



Notes on OpenACC Code

Moving data is expensive

Leave on device where possible

May need to copy to separate memory to make use of OpenACC directives to
move data (using a variable name)

C code that uses multidimensional arrays is problematic (in principle, can be
handled)
Need to explicitly move data to the host for MPI

e Direct MPI access is being considered, but complex to fit into OpenACC model

Any functions within accelerator code need to be inlined (either by compiler
or programmer)



OpenACC Structure (Simple)

= // Establish data region for acc so data can live in acc. fmatrix defined as a one-dimensional
// array (“flat matrix”) version of matrix; requires allocation and copy. Needed because some
// OpenACC compilers unhappy with multidimensional C arrays whose sizes are not known at compile
// time
matlocalsize = (rows+2)*(cols+2);
#pragma acc data copyin(fmatrix[0:matlocalsize-1])
// This loop executes on the host
for (...) {
// Move data from accelerator back to host so MPI can access
#pragma acc update host(fmatrix[0:matlocalsize-1])
call exchange
// Move updated data back to accelerator
#pragma acc update device(fmatrix[0:matlocalsize-1])
// Perform the updates on the accelerator
#pragma acc kernels
#pragma acc loop independent

for (...) {
#pragma acc loop independent
for(...){...}
}
}

if (ime to output) {
#pragma acc update host(fmatrix[0:matlocalsize-1])
checkpoint(fmatrix)

}
}



Notes on OpenACC Sketch

= Cand Fortran multidimensional arrays are not stored the same way (C’s are
arrays of pointers); means that OpenACC can work with Fortran
multidimensional arrays more easily than with C

— The Fortran version of this can be simpler; that’s why you will often see Fortran
examples for OpenACC

= Enclose as much code as reasonable in the acc data statement
— Helps minimize data motion to/from accelerator

— Note that you need to indicate how much data to move; uses Fortran array
notation

=  QOptimizations that can be considered

— Better to move just the part of fmatrix needed by MPI (edge rows for send to host,
ghost rows from receive back to device)

— Same for checkpoint — no need to move ghost cells

— Can use “async” qualifier to overlap host and accelerator operations
e Similar to OpenMP overlap code

— Use “kernels” rather than “parallel” (more flexible for compiler); add additional
loop pragmas to control, exploit additional levels of parallelism



Exchanging Data with RMA
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Revisiting Mesh Communication

=  Recall how we designed the parallel implementation
— Determine source and destination data
= Do not need full generality of send/receive

— Each process can completely define what data needs to be moved to itself,
relative to each processes local mesh
e Each process can “get” data from its neighbors
— Alternately, each can define what data is needed by the neighbor
processes
e Each process can “put” data to its neighbors
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Remote Memory Access

Separates data transfer from indication of completion (synchronization)

In message-passing, they are combined

Proc O Proc 1

store

send receive
load

Proc O Proc 1

fence fence

put

fence fence
load

or
store
fence fence

get
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Remote Memory Access in MPI-2
(also called One-Sided Operations)

= Goals of MPI-2 RMA Design

— Balancing efficiency and portability across a wide class of architectures
e shared-memory multiprocessors
e NUMA architectures
e distributed-memory MPP’s, clusters
e Workstation networks
— Retaining “look and feel” of MPI-1

— Dealing with subtle memory behavior issues: cache coherence, sequential
consistency
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Remote Memory Access Windows and Window
Objects

Process 0 Process 1
Get
R\~
— |
~_ N
Put
window Process 2 Process 3
| > \
\
0O O | _

= address spaces _ 5 = window object
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Basic RMA Functions for Communication

= MPI Win create exposeslocal memory to RMA operation by other
processes in a communicator

— Collective operation
— Creates window object

= MPI Win free deallocates window object

= MPI Put moves data from local memory to remote memory

= MPI Get retrieves data from remote memory into local memory
= MPI Accumulate updates remote memory using local values
= Data movement operations are non-blocking

=  Subsequent synchronization on window object needed to ensure
operation is complete
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Why Use RMA?

B Potentially higher performance on some platforms, e.g., SMPs
B Detalils later

Halo Performance on Sun

80

—o—sendrecv-8

—8— psendrecv-8
putall-8

—¢—putpscwalloc-8

—¥—putlockshared-8
putlocksharednb-8

uSec

0 200 400 €00 800 1000 1200
Bytes
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Advantages of RMA Operations

= Can do multiple data transfers with a single synchronization operation
— like BSP model

= Bypass tag matching
— effectively precomputed as part of remote offset

= Some irregular communication patterns can be more economically
expressed

= Can be significantly faster than send/receive on systems with hardware
support for remote memory access, such as shared memory systems
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Irregular Communication Patterns with RMA

= |f communication pattern is not known a priori, the send-recv model
requires an extra step to determine how many sends-recvs to issue

= RMA, however, can handle it easily because only the origin or target
process needs to issue the put or get call

= This makes dynamic communication easier to code in RMA
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RMA Window Objects

MPI Win create(base, size, disp unit, info, comm, win)

= Exposes memory given by (base, size) to RMA operations by other
processes in comm
" winis window object used in RMA operations
"= disp unit scales displacements:
— 1 (noscaling) or sizeof (type), where window is an array of elements of type
type
— Allows use of array indices
— Allows heterogeneity
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RMA Communication Calls

= MPI Put -storesinto remote memory
= MPI Get -reads from remote memory
= MPI Accumulate - updates remote memory

= All are non-blocking: data transfer is described, maybe even initiated,
but may continue after call returns

=  Subsequent synchronization on window object is needed to ensure
operations are complete

143



Put, Get, and Accumulate

" MPI Put(origin addr, origin count,
origin datatype,
target rank, target offset,
target count, target datatype,
window)

" MPI Get( ... )

" MPI Accumulate( ..., op, ... )

" opisasinMPI_Reduce, but no user-defined operations are allowed
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The Synchronization Issue

MPI_Get
>

local —

stores _—

B |ssue: Which value is retrieved?

— Some form of synchronization is required between local load/

stores and remote get/put/accumulates
B MPI provides multiple forms
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Synchronization with Fence

Simplest methods for synchronizing on window obijects:
= MPI Win fence - like barrier, supports BSP model

Process 0 Process 1
MPI_Win_fence(win) MPI_Win_fence(win)
MPI| Put

MPI| Put

MPI_Win_fence(win) MPI_Win_fence(win)
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Mesh Exchange Using MPlI RMA

= Define the windows
— Why — safety, options for performance (later)

=  Define the data to move

=  Mark the points where RMA can start and where it must complete
(e.g., fence/put/put/fence)
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Outline of 1D RMA Exchange

= Create Window object
= Computing target offsets
= Exchange operation
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Computing the Offsets

= Offset to top ghost row
-1

= Offset to bottom ghost row
— 1+ (#cellsin arow)*(# of rows—1)
— =1+ (cols+2)*((e+1) —(s-1) +1-1)
— =1+ (cols+2)*(e—s+2)

8(1 ’S)\

cols
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Fence Life Exchange Code Walkthrough

= Points to observe
— MPI_Win_fence is used to separate RMA accesses from non-RMA accesses

e Both starts and ends data movement phase

— Any memory may be used
e No special malloc or restrictions on arrays

— Uses same exchange interface as the point-to-point version

— Two MPI_Win objects are used because there are two arrays, matrix and
temp

See mlife-fence.c pp. 1-3 for code example.
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Comments on Window Creation

= MPI-2 provides MPI_SIZEOF for Fortran users
— Not universally implemented
— Use MPI_Type_size for portability

= Using a displacement size corresponding to a basic type allows use of
put/get/accumulate on heterogeneous systems
— Even when the sizes of basic types differ

= Displacement size also allows easier computation of offsets in terms of
array index instead of byte offset
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More on Fence

= MPI_Win_fence is collective over the group of the window object

= MPI_Win_fence is used to separate, not just complete, RMA and local
memory operations
— That is why there are two fence calls
= Why?

— MPI RMA is designed to be portable to a wide variety of machines,
including those without cache coherent hardware (including some of the

fastest machines made)
— See performance tuning for more info
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Scalable Synchronization with Post/Start/Complete/Wait

= Fence synchronization is not scalable because it is collective over the
group in the window object

= MPI provides a second synchronization mode: Scalable Synchronization

— Uses four routines instead of the single MPI_Win_fence:

e 2 routines to mark the begin and end of calls to RMA routines
— MPI_Win_start, MPI_Win_complete

e 2 routines to mark the begin and end of access to the memory window
— MPI_Win_post, MPI_Win_wait

= P/S/C/W allows synchronization to be performed only among
communicating processes
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Synchronization with P/S/C/W

=  QOrigin process calls MPI_Win_start and MPI_Win_complete
= Target process calls MPI_Win_post and MPI_Win_wait

Process 0 Process 1
MPI_Win_start(target _grp) MPI1_Win_post(origin_grp)
MPI| Put

MPI| Put

MPI_Win_complete(target_grp) MPI_Win_wait(origin_grp)
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P/S/C/W Life Exchange Code Walkthrough

= Points to Observe
— Use of MPI group routines to describe neighboring processes

— No change to MPI_Put calls

e You can start with MPI_Win_fence, then switch to P/S/C/W calls if necessary to
improve performance

See mlife-pscw.c pp. 1-4 for code example.
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pNeo - Modeling the Human Brain
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Science Driver

= Goal: Understand conditions, causes, and possible corrections for
epilepsy

= Approach: Study the onset and progression of epileptiform activity in
the neocortex

= Technique: Create a model of neurons and their interconnection
network, based on models combining wet lab measurements of
resected tissue samples and in vivo studies

= Computation: Develop a simulation program that can be used for
detailed parameter studies
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Model Neurons

- Neurons in the focal neocortex
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Modeling Approach

Individual neurons are modeled using electrical P P R s e
analogs to parameters measured in the laboratory o o Sollooi ] H -
Differential equations describe evolution of the . 8o ol 28]7 S ;\%ﬁ
neuron state variables — - /w%— -2\0\53“7*“*‘;:‘5‘7500080—
Neuron spiking output is wired to thousands of o9 ol e e f'oot)\ ool %,
cells in a neighborhood B
Wiring diagram is based on wiring patterns g : ‘Q iqo' (- i?fo ——=
observed in neocortex tissue samples o o Y- DRl o
Computation is divided among available processors S Pt T
°0 |% % | 08o| oo ©° § 9°

Schematic of a two dimensional
patch of neurons showing
communication neighborhood for
one of the cells in the simulation
and partitioning of the patch
among processors.
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Abstract pNeo for Tutorial Example

= “Simulate the simulation” of the evolution of neuron state instead of
solving the differential equations
=  Focus on how to code the interactions between cells in MPI

= Assume one cell per process for simplicity
— Real code multiplexes many individual neurons onto one MPI process
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What Happens In Real Life

= Each cell has a fixed number of connections to some other cells
= Cell “state” evolves continuously
= From time to time “spikes” arrive from connected cells.

=  Spikes influence the evolution of cell state

= From time to time the cell state causes spikes to be sent to other
connected cells
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What Happens In Existing pNeo Code

In pNeo, each cell is connected to about 1000 cells

— Large runs have 73,000 cells
— Brain has ~100 billion cells

= Connections are derived from neuro-anatomical data
= There is a global clock marking time steps
= The state evolves according to a set of differential equations
= About 10 or more time steps between spikes
— l.e., communication is unpredictable and sparse
=  Possible MPI-1 solutions

— Redundant communication of communication pattern before
communication itself, to tell each process how many receives to do

— Redundant “no spikes this time step” messages
= MPI-2 solution: straightforward use of Put, Fence
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What Happens in Tutorial Example

= There is a global clock marking time steps

= At the beginning of a time step, a cell notes spikes from connected cells
(put by them in a previous time step).

= A dummy evolution algorithm is used in place of the differential equation
solver.

= This evolution computes which new spikes are to be sent to connected
cells.

= Those spikes are sent (put), and the time step ends.
= We show both a Fence and a Post/Start/Complete/Wait version.
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Two Examples Using RMA

= Global synchronization
— Global synchronization of all processes at each step
— lllustrates Put, Get, Fence

= Local synchronization

— Synchronization across connected cells, for improved scalability
(synchronization is local)

— lllustrates Start, Complete, Post, Wait
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pNeo Code Walkthrough

= Points to observe
— Data structures can be the same for multiple synchronization approaches
= Code is simple compared to what a send/receive version would look
like
— Processes do no need to know which other processes will send them spikes
at each step

See pneo_fence.c and pneo_pscw.c for code examples.
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Passive Target RMA

166



Active vs. Passive Target RMA

= Active target RMA requires participation from the target process in the
form of synchronization calls (fence or P/S/C/W)

= |n passive target RMA, target process makes no synchronization call

167



Passive Target RMA

= We need to indicate the beginning and ending of RMA calls by the
process performing the RMA

— This process is called the origin process

— The process being accessed is the target process
= For passive target, the begin/end calls are

— MPI_Win_lock, MPI_Win_unlock
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Synchronization for Passive Target RMA

" MPI Win lock(locktype, rank, assert, win)
— Locktype is
e MPI_LOCK_EXCLUSIVE

— One process at a time may access
— Use when modifying the window
e MPI_LOCK SHARED

— Multiple processes (as long as none hold MPI_LOCK_EXCLUSIVE)
— Consider using when using MPI_Get (only) on the window

— Assert is either 0 or MPI_MODE_NOCHECK
* MPI Win unlock(rank, win)

= Lock is not a real lock but means begin-RMA; unlock is end-RMA, not
real unlock
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Put with Lock

if (rank == 0) {
MPI_win_lock (MPI_LOCK_EXCLUSIVE, 1, 0, win);
MPI_Put(outbuf, n, MPI_INT, 1, O, n, MPI_INT,
win) ;
MPI_Win_unlock(1l, win);

¥
= Only process performing MPIl_Put makes MPI RMA calls

— Process with memory need not make any MPI calls; it is “passive”
= Similarly for MPI_Get, MPI_Accumulate
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Put with Lock (Fortran)

1if (rank .eqg. 0) then

call MPI_W'in_1OCk(MPI_LOCK_EXCLUSIVE, 1, 0, win,&
ierr )

call MPI_Put(outbuf, n, MPI_INTEGER, &
1, zero, n, MPI_INTEGER, win, 1ierr)

call MPI_win_unlock(l, win, ierr)

endif

Only process performing MPI_Put makes MPI RMA calls
— Process with memory need not make any MPI calls; it is “passive”

Similarly for MPI_Get, MPI_Accumulate

zero must be a variable of type
— Integer (kind=MPI_ADDRESS_KIND) zero
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Global Arrays

= Lets look at updating a single array, distributed across a group of
processes
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A Global Distributed Array

Problem: Application needs a single, 1-dimensional array that any
process can update or read

= Solution: Create a window object describing local parts of the array,
and use MPI_Put and MPI_Get to access

pn
e

= Each process has alocal[n]

=  We must provide access to a[pn]

=  We cannot use MPI_Win_fence; we must use MPl_Win_lock and
MPI_Win_unlock
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Creating the Global Array

volatile double *locala;

MPI_Alloc_mem(n * sizeof(double), MPI_INFO_NULL,

&locala);
MPI_Win_create(locala, n * sizeof(double),
sizeof(double),

MPI_INFO_NULL, comm, &win);
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Comments

= MPI-2 allows “global” to be relative to a communicator, enabling
hierarchical algorithms

— i.e., “global” does not have to refer to MPI_COMM_WORLD

= MPI_Alloc_mem is required for greatest portability

— Some MPI implementations may allow memory not allocated with
MPI_Alloc_mem in passive target RMA operations
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Accessing the Global Array From a Remote

Process

= To update:
rank = 1 / n;
offset = 1 % n;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, 0O, win);
MPI_Put(&value, 1, MPI_DOUBLE,
rank, offset, 1, MPI_DOUBLE, win);
MPI_Win_unlock(rank, win);

= Toread:
rank = 1 / n;
offset = 1 % n;
MPI_Win_lock(MPI_LOCK_SHARED, rank, O, win);
MPI_Get(&value, 1, MPI_DOUBLE,
rank, offset, 1, MPI_DOUBLE, wih);
MPI_Win_unlock(rank, win);
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Accessing the Global Array From a Remote Process
(Fortran)

= Toupdate:

rank = 1 / n

offset = mod(i,n)

call MPI_win_lock(MPI_LOCK_EXCLUSIVE, rank, 0, &

win, 1ierr)

call MPI_Put(value, 1, MPI_DOUBLE_PRECISION, &
rank, offset, 1, MPI_DOUBLE_PRECISION, &
win, ierr )

call MPI_win_unlock(rank, win, ierr )

= Toread:

rank = 1 / n

offset = mod(i,n)

call MPI_win_lock(MPI_LOCK_SHARED, rank, 0, &

win, ierr )

call MPI_Get(value, 1, MPI_DOUBLE_PRECISION, &
rank, offset, 1, MPI_DOUBLE_PRECISION, &
win, ierr )

call MPI_win_unlock(rank, win, ierr )
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Accessing the Global Array From a Local
Process

= Theissues

— Cache coherence (if no hardware)
— Data in register

= Toread:
volatile double *locala;
rank = 1 / n;
offset = 1 % n;
MPI_Win_lock(MPI_LOCK_SHARED, rank, O, win);
1f (rank == myrank) {
value = locala[offset];

}
else {
MPI_Get(&value, 1, MPI_DOUBLE,
rank, offset, 1, MPI_DOUBLE, win);
}

MPI_Win_unlock(rank, win);
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Accessing the Global Array From a Local
Process (Fortran)

= Theissues
— Cache coherence (if no hardware)
— Data in register
— (We'll come back to this case)

= Toread:
double precision locala(0:mysize-1)
rank = 1 / n
offset = mod(i,n)
call MPI_win_lock(MPI_LOCK_SHARED, rank, 0O, win,
ierr)
1f (rank .eq. myrank) then
value = locala(offset)
else
call MPI_Get(&value, 1, MPI_DOUBLE_PRECISION, &
rank, offset, 1, MPI_DOUBLE_PRECISION, &
win, 1ierr)
endif
call MPI_win_unlock(rank, win, ierr)
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Memory for Passive Target RMA

= Passive target operations are harder to implement
— Hardware support helps

= MPI allows (but does not require) an implementation to require that
windows objects used for passive target RMA use local windows
allocated with MPI_Alloc_mem
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Allocating Memory

= MPI_Alloc._ mem, MP|_Free_mem

Special Issue: Checking for no memory available:
— e.g., the Alloc_mem equivalent of a null return from malloc
— Default error behavior of MPI is to abort

= Solution:

— Change the error handler on MPI_COMM_WORLD to

MPI_ERRORS_RETURN, using MPI_COMM_SET_ERRHANDLER (in MPI-1,
MPI_ERRHANDLER_SET)

— Check error class with MPI_ERROR_CLASS
e Error codes are not error classes
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Using MPI_Alloc_mem from Fortran

= No general solution, but some Fortran extensions allow the following:
double precision u

pointer (p, u(0:50,0:20))

integer (kind=MPI_ADDRESS_KIND) size

integer sizeofdouble, ierror

I careful with size (must be MPI_ADDRESS_KIND)
call MPI_SIZEOF(u, sizeofdouble, ierror)

size = 51 * 21 * sizeofdouble

call MPI_ALLOC_MEM(size, MPI_INFO_NULL, p, 1ierror)

program may now refer to u, including passing it
to MPI_WIN_CREATE

call MPI_FREE_MEM(u, ierror) ! not p!
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\ |
Mutex with Passive Target RMA

= MPI_Win_lock/unlock DO NOT define a critical section

= One has to implement a distributed locking algorithm using passive
target RMA operations in order to achieve the equivalent of a mutex

=  Example follows
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Implementing Mutex

Process 0 Process 1

U U R R —

Process N-1

Create “waitwin” window object

— One process has N-byte array (byte per process)

One access epoch to try to lock
— Put “1” into corresponding byte
— Get copy of all other values

If all other values are zero, obtained lock

Otherwise must wait

waitwin window
object
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Attempting to lock

Process 0 Process 1 Process 3
waitwin[4] FL)OEFI bye 1)
—— Put(1 at byte
05 (D?Oi@}( Get(other 3 bytes)

lock was obtained

N

o other 1s, so

\ Lock
Put(1 at byte 3)

Get(other 3 bytes)
nlock

1 in rank 1 position,
SO process must wait

Processes use one access epoch to attempt to obtain the lock

Process 1 succeeds, but process 3 must wait
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Waiting for the lock

= Naive approach: simply MPI_Get the other bytes over and over
— Lots of extra remote memory access
— Better approach is to somehow notify waiting processes

— Using RMA, set up a second window object with a byte on each process,
spin-wait on local memory
e This approach is like MCS locks
e Lots of wasted CPU cycles spinning

= Better approach: Using MPI-1 point-to-point, send a zero-byte message
to the waiting process to notify it that it has the lock
e Let MPIl implementation handle checking for message arrival
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Releasing the Lock

Process 0 Process 1 Process 3
waitwin[4] Lock MPI_Recv(ANY_SRC)
— — Put(0 at byte 1)
04070 1\\ Get(other 3 bytes)

1 in rank 3 position,
must notify of release

MPI_Send(rank 3)

MPI_Recv completes,
Process 3 has lock

= Process 1 uses one access epoch to release the lock

= Because process 3 is waiting, process 1 must send a message to notify
process 3 that it now owns the lock
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Mutex Code Walkthrough

B Code allows any process to be the “home” of the array:

Process 0 Process “homerank” Process nprocs - 1

A |

= mpimutex_t type, for reference:

typedef struct mpimutex {
int nprocs, myrank, homerank;
MPI_Comm comm;
MPI_Win waitlistwin;
MPI_Datatype waitlisttype;
unsigned char *waitlist;

} *mpimutex_t;

waitlistwin
object

See mpimutex.c for code example.
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Comments on Local Access

= \olatile:

— Tells compiler that some other agent (such as another thread or process)
may change the value

— In practice, rarely necessary for arrays but usually necessary for scalars

— Volatile is not just for MPI-2. Any shared-memory program needs to worry
about this (even for cache-coherent shared-memory systems)

= Fortran users don’t have volatile (yet):

— But they can use the following evil trick ...
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Simulating Volatile for Fortran

=  Replace MPI_Win_unlock with
subroutine My_Wwin_unlock(rank, win, var, 1ierr)
integer rank, win, 1ierr
double precision var
call MPI_win_unlock(rank, win)
return

= When used in Fortran code, the compiler only sees
call My_win_unlock(rank, win, var, 1ierr)
and assumes that var might be changed, causing the compiler to reload
var from memory rather than using a value in register

190



Tuning RMA
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Performance Tuning RMA

=  MPI provides generality and correctness

= Special cases may allow performance optimizations

— MPI provides two ways to identify special cases:
e Assertion flags for MPI_Win_fence, etc.
e Info values for MPI_Win_create and MPI_Alloc_mem
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Tuning Fence

= Asserts for fence

— Note that these rely on understanding the “global/collective” use of the
RMA calls in the code.
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MPI_Win_fence Assert Values

MPI_MODE_NOSTORE

— No update to the local window was made by the local process (using
assignments, e.g., stores) since the last call to MPI_Win_fence

MPI_MODE_NOPUT

— There will be no RMA (Put or Accumulate) to the local window before the
next MPI_Win_fence

MPI_MODE_NOPRECEDE

— This MPI_Win_fence will not complete any RMA calls made by this process
(no preceding RMA calls)

MPI_MODE_NOSUCCEED

— No RMA calls will be made on this window before the next MPI_Win_fence
call (no succeeding (as in coming after) RMA calls)
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Assert Values in Life Exchange

MPI Win fence (MPI_MODE NOPRECEDE, win);

MPI Put (&matrix[myrows][0], cols+2, MPI INT,
exch next, 0, cols+2, MPI INT, win);

MPI Put(&matrix[1][0], cols+2, MPI INT, exch prev,
(nrows prev+l) * (cols+2), cols+2, MPI INT, win);

MPI Win fence (MPI_MODE NOSTORE | MPI_MODE NOPUT |
MPI_MODE NOSUCCEED, win) ;
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Assert Values in Life Exchange (Fortran)

call MPI Win fence (MPI_MODE NOPRECEDE, win, ierr )

call MPI Put( matrix(myrows,0), cols+2, MPI INTEGER, &
exch_next 0, cols+2, MPI INTEGER win, &
ierr)

call MPI Put( matrix(1,0), cols+2, MPI INTEGER, &
exch prev, &
(nrows prev+l) * (cols+2), cols+2, MPI INT, win, &
ierr )

call MPI W:Ln fence (MPI MODE NOSTORE + &
MPTI _MODE NOPUT + MPI _MODE NOSUCCEED, win, &
ierr )
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Tuning P/S/C/W

= Asserts for MPI_Win_start and MPl_Win_post

= Start
— MPI_MODE_NOCHECK
e Guarantees that the matching calls to MPI_Win_post have already been made
= Post
— MPI_MODE_NOSTORE, MPI_MODE_NOPUT
e Same meaning as for MPI_Win_fence
— MPI_MODE_NOCHECK
e Nocheck means that the matching calls to MPI_Win_start have not yet occurred
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MPl_Win_create

= |f only active-target RMA will be used, pass an info object to
MPI_Win_create with key “no_locks” set to “true”

MPI Info info;

MPI Info create( &info );

MPI Info set( info, "no locks", "true" );
MPI Win create( ..., info, ... );

MPI Info free( &info );
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MPI_Win_create (Fortran)

= |f only active-target RMA will be used, pass an info object to
MPI_Win_create with key “no_locks” set to “true”

integer info;

call MPI Info create( info, ierr )

call MPI Info set( info, "no locks", "true", ierr )
call MPI Win create( ..., info, ... , ierr )

call MPI Info free( info, ierr )
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Understanding the MPI-2 Completion Model

= Very relaxed
— To give the implementer the greatest flexibility

— Describing this relaxed model precisely is difficult
e Implementer only needs to obey the rules

— But it doesn’t matter; simple rules work for most programmers

= When does the data actually move?

200



Data Moves Early

Process 0 Process 1

MPI_Win_lock -
(win_lock returns) — (lock granted)
MPI_Put =~

™ (window updated)
MPI_Put ~

> (window updated)
MPI_Get

—> (window accessed)

-

MPI_Win_unlock
>(Iock released)

(unlock returns)
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Data Moves Late

Process 0 Process 1

MPI_Win_lock (save information)

MPI_Put (save information)
MPI_Put (save information)
MPI_Get (save information)

MPI_Win_unlock ~—

release lock
(unlock returns) -— )

(acquire lock, process requests,
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Performance Tests

= “Halo” exchange or ghost-cell exchange operation
— Each process exchanges data with its nearest neighbors
— Part of mpptest benchmark
— One-sided version uses all 3 synchronization methods

!

!

— Sun Fire SMP at Univ. of Aachen, Germany

= Ran on

— IBM p655+ SMP at San Diego Supercomputer Center
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One-Sided Communication on Sun SMP with
Sun MPI

Halo Performance on Sun

80

70 nas

60 — - s

—o—sendrecv-8
—8—psendrecv-8
putall-8
—<—putpscwalloc-8
—¥— putlockshared-8
putlocksharednb-8

uSec

0 200 400 €00 800 1000 1200
Bytes
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One-Sided Communication on IBM SMP with

IBM MPI

350

300

250

200

uSec

150

100

Halo Performance (IBM-7)

600 800 1000 1200

—o—sendrecv-2
——psendrecv-2
put-2
—>¢—putpscw-2
—¥—sendrecv-4
psendrecv-4
——put-4
putpscw-4
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Common MPI User Errors
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Top MPI Errors

= Fortran: missing ierr argument
=  Fortran: missing MPI_STATUS_SIZE on status

= Fortran: Using integers where MPI_OFFSET_KIND or MPI_ADDRESS_KIND integers
are required (particularly in I/O)

= Fortran 90: Using array sections to nonblocking routines (e.g., MPI_lIsend)

= All:
= All:
= All:
= All:
= All:
= All:
= All:
= All:
= All:

MPI_Bcast not called collectively (e.g., sender bcasts, receivers use MPIl_Recv)
Failure to wait (or test for completion) on MPI_Request

Reusing buffers on nonblocking operations

Using a single process for all file I/0O

Using MPI_Pack/Unpack instead of Datatypes

Unsafe use of blocking sends/receives

Using MPI_COMM_WORLD instead of comm in libraries

Not understanding implementation performance settings

Failing to install and use the MPI implementation according to its documentation
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Recent Efforts of the MPI Forum
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MPI Standard Timeline

= MPI-1(1994)

— Basic point-to-point communication, collectives, datatypes, etc
= MPI-2 (1997)

— Added parallel I/O, RMA, dynamic processes, C++ bindings, etc

= -—-Stable for 10 years ----

= MPI-2.1 (2008)

— Minor clarifications and bug fixes to MPI-2
= MPI-2.2 (2009)

— Small updates and additions to MPI 2.1
= MPI-3(2012)

— Major new features and additions to MPI
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MPI 2.1, 2.2, and MPI 3

The MPI Forum has resumed meeting since January 2008

Meetings held every 6-8 weeks in Chicago, SF Bay Area, Europe (with
Euro MPI), and Japan

About 30 attendees per meeting
— All major vendors represented; several attendees from Europe and Japan

Full schedule: http://meetings.mpi-forum.org/Meeting details.php
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MPI 2.1

First official action of the new MPI Forum
Minor clarifications and bug fixes to MPI 2.0
No new features or changes to the API

Merging of MPI 1.2, MPI 2.0, and errata from the web site into a single
document
— No references to MPI-1 or MPI-2 in the text, just MPI

— Turned out to be a huge effort to fix the text to make it sound like one
cohesive document

Officially approved by the MPI Forum at the Sept 2008 meeting

Supported by open source MPIl implementations (MPICH, Open MPI)
soon thereafter

211



MPI 2.2

Officially approved by the MPI Forum at the Sept 2009 meeting

Small updates to the standard

— Does not break backward compatibility

— Include some new functions (next slide)
Spec can be downloaded from the MPI Forum web site
www.mpi-forum.org

Also available for purchase as a book from
https://fs.hlrs.de/projects/par/mpi/mpi22/

Supported by MPICH
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New Features in MPI 2.2

Scalable graph topology interface

— Existing interface requires the entire graph to be specified on all processes,
which requires too much memory on large numbers of processes

— New functions allow the graph to be specified in a distributed fashion
(MPI_Dist_graph_create, MPI_Dist_graph_create_adjacent)

A local reduction function
— MPI_Reduce_local(inbuf, inoutbuf, count, datatype, op)
— Needed for libraries to implement user-defined reductions

MPI_Comm_create extended to enable creation of multiple disjoint
communicators

Regular (non-vector) version of MPI_Reduce_scatter called
MPI_Reduce_scatter block
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New Features in MPI 2.2

MPI_IN_PLACE option added to MPI_Alltoall, Alltoallv, Alltoallw, and
Exscan

The restriction on the user not being allowed to access the contents of
the buffer passed to MPI_Isend before the send is completed by a test or
wait has been lifted

New C99 datatypes (MPI_INT32_T, MPI_C_DOUBLE_COMPLEX, etc) and
MPI_AINT/ MPI_OFFSET

C++ bindings deprecated
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MPI-3

= Released just two days ago!
= At least 3 years of the MPI Forum’s effort went into defining MPI-3

= Specification documents available from www.mpi-forum.org
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Overview of New Features in MPI-3

=  Major new features
— Nonblocking collectives
— Neighborhood collectives
— Improved one-sided communication interface
— Tools interface
— Fortran 2008 bindings
Other new features
— Matching Probe and Recv for thread-safe probe and receive

— Noncollective communicator creation function
— “const” correct C bindings

— Comm_split_type function

— Nonblocking Comm_dup

— Type_create_hindexed_block function

C++ bindings removed

Previously deprecated functions removed
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Nonblocking Collectives

Nonblocking versions of all collective communication functions have been
added

— MPI_Ibcast, MPI_Ireduce, MPI_lallreduce, etc.
— There is even a nonblocking barrier, MPI_lbarrier

= They return an MPIl_Request object, similar to nonblocking point-to-point
operations

= The user must call MPI_Test/MPI_Wait or their variants to complete the
operation

= Multiple nonblocking collectives may be outstanding, but they must be
called in the same order on all processes
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Neighborhood Collectives

= New functions MPI_Neighbor_allgather, MPI_Neighbor_alltoall, and their
variants define collective operations among a process and its neighbors

= Neighbors are defined by an MPI Cartesian or graph virtual process
topology that must be previously set

= These functions are useful, for example, in stencil computations that
require nearest-neighbor exchanges

= They also represent sparse all-to-many communication concisely, which is
essential when running on many thousands of processes.

— Do not require passing long vector arguments as in MPI_Alltoallv
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Improved RMA Interface

=  Substantial extensions to the MPI-2 RMA interface

= New window creation routines:

— MPI_Win_allocate: MPI allocates the memory associated with the window
(instead of the user passing allocated memory)

— MPI_Win_create_dynamic: Creates a window without memory attached. User
can dynamically attach and detach memory to/from the window by calling
MPI_Win_attach and MPI_Win_detach

— MPI_Win_allocate_shared: Creates a window of shared memory (within a
node) that can be used for direct load/store accesses in addition to RMA ops

= New atomic read-modify-write operations
— MPI_Get_accumulate
— MPI_Fetch_and _op (simplified version of Get_accumulate)
— MPI_Compare_and_swap
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Improved RMA Interface contd.

= A new “unified memory model” in addition to the existing memory model,
which is now called “separate memory model”

= The user can query (via MPI Win get attr) if the implementation supports a
unified memory model (e.g., on a cache-coherent system), and if so, the
memory consistency semantics that the user must follow are greatly
simplified.

= New versions of put, get, and accumulate that return an MPI_Request
object (MPI_Rput, MPI_Rget, ...)

= User can use any of the MPI_Test or MPI_Wait functions to check for local
completion, without having to wait until the next RMA synchronization
call

= Should be used for large transfers, not latency-sensitive short messages,
because of the slight additional overhead to create a request
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Tools Interface

= An extensive interface to allow tools (debuggers, performance analyzers,
etc.) to portably extract information about MPI processes

= Enables the setting of various control variables within an MPI
implementation, such as algorithmic cutoff parameters
— e.g, eager v/s rendezvous thresholds

— Switching between different algorithms for a collective communication
operation

= Provides portable access to performance variables that can provide insight
into internal performance information of the MPIl implementation

— e.g., length of unexpected message queue

= Note that each implementation defines its own performance and control
variables; MPI does not define them
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Fortran 2008 Bindings

= An additional set of bindings for the latest Fortran specification

=  Supports full and better quality argument checking with individual handles
= Support for choice arguments, similar to (void *) in C

= Enables passing array subsections to nonblocking functions

=  QOptional ierr argument

= Fixes many other issues with the old Fortran 90 bindings
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Matching Probe and Receive

= Existing MPI_Probe mechanism has a thread safety problem in that a

different thread’s MPI_Recv may match the message indicated by a given
thread’s call to MPIl_Probe

= The new MPI_Mprobe function returns an MPI_Message handle that can

be passed to the new MPI_Mrecv function to receive that particular
message

=  Nonblocking versions MPI_Improbe and MPI_Imrecv also exist
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Other new features

Noncollective communicator creation function

— Existing MPI_Comm_create requires all processes in input communicator to
call the function, even if they are not part of the output communicator

— New function MPI_Comm_create_group requires only the group of processes
belonging to the output communicator to call the function

= Cbindings have been made “const” correct
= Nonblocking communicator duplication (MPI_Comm_Idup)
= MPI_Comm_split_type function

— Can be used to split a communicator into “one communicator per shared-
memory node”

= MPI_Type create_hindexed block function
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Old Deprecated Functions Removed

= Functions that were deprecated in previous versions of MPI have now
been removed

— e.g., MPI_Address, MPI_Type_extent

= However, in all cases better alternative functions exist that fix some
problems with the original functions (often related to the Fortran binding)

— e.g., MPl_Get_address, MPI_Type_get_extent

= Will affect backward compatibility in the sense that codes that still use the
old functions will need to replace them

= But the functions were deprecated for a reason (in many cases over 15
years ago), so it is a good idea to switch in any case

= C++ bindings have been removed. (They were deprecated in 2.2.)
" You can still use MPI from C++ by calling the C bindings
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What did not make it into MPI-3

= There were some evolving proposals that did not make it into MPI-3
— e.g., fault tolerance and improved support for hybrid programming

= This was because the Forum felt the proposals were not ready for
inclusion in MPI-3

= These topics may be included in a future version of MPI

226



Conclusions
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Designing Parallel Programs

I”

= Common theme — think about the “global” object, then see how MPI

can help you

= Also specify the largest amount of communication or I/O between
“synchronization points”

— Collective and noncontiguous 1/0
— RMA
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Summary

= MPI-2 provides major extensions to the original message-passing model
targeted by MPI-1

— Implementations are available
=  MPI-3 provides further extensions essential for current and future
generation systems
— Implementations should be available soon

= Sources:
— The MPI standard documents are available at
http://www.mpi-forum.org
— Two-volume book: MPI - The Complete Reference, available from MIT Press

— Using MPI (Gropp, Lusk, and Skjellum) and Using MPI-2 (Gropp, Lusk, and
Thakur), MIT Press
e Using MPI also available in German from Oldenbourg
e Using MPI-2 also available in Japanese, from Pearson Education Japan

— MPI 2.2 standard as a book
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Conclusions

= MPIis a proven, effective, portable parallel programming model

= MPI has succeeded because

— features are orthogonal (complexity is the product of the number of
features, not routines)

— programmer can control memory motion (critical in high-performance
computing)

— complex programs are no harder than easy ones

— open process for defining MPI led to a solid design
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MPICH: A High Performance Implementation of MPI

= MPICH is both a production implementation of MPI as well as a vehicle for
doing research in MPIl and other advanced runtime capabilities we expect
to see in large-scale systems

=  MPICH has prototyped various proposals in the MPI Forum as they were
being proposed

= Has been the first implementation of every released MPI standard
- MPI1.0,1.1,1.2,1.3,2.0,2.1, 2.2

= We are working on being the first implementation to support MPI-3
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MPICH Project Goals

= Be the MPI implementation of choice for the highest-end parallel
machines

6 of the top 10 machines in the June 2012 Top500 list use MPICH exclusively
3 others use MPICH in conjunction with other MPIl implementations

— The remaining one (K computer) is working to get MPICH running on their

machine

= Carry out the research and development needed to scale MPI to exascale

Optimizations to reduce memory consumption

Fault tolerance

Efficient multithreaded support for hybrid programming
Performance scalability

Extensions to MPI

= Work with the MPI Forum on standardization and early prototyping of
new features

= |nvestigate new features for inclusion in MPIl beyond MPI-3
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MPICH-based Implementations of MPI

IBM MPI for the Blue Gene/Q (and earlier Blue Genes)

— Used at Livermore (Sequoia), Argonne (Mira), and other major BG/Q
installations

= Unified IBM implementation for BG and Power systems

= Cray MPI for XE/XK-6

— On Blue Waters, Oak Ridge (Jaguar, Titan), NERSC (Hopper), HLRS Stuttgart,
and other major Cray installations

= Intel MPI for clusters

=  Microsoft MPI

= Myricom MPI

= MVAPICH2 from Ohio State for InfiniBand
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MPICH Collaborators/Partners

= Core MPICH developers
= |[BM
* INRIA ZJINR
= Microsoft
= |ntel
= University of lllinois
= University of British Columbia
= Derivative implementations

—_— Leap ahead

| Cray EPEPUTER COMPANY
= Myricom |y Myr’c—&"
= Ohio State University =— MVAPICH g
= Other Collaborators bsaft e No:fw{;

. Absoft abs:
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: : ueern’s
= Queen’s University, Canada Queerns
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Source code of examples

= The code examples can be downloaded from
http://tinyurl.com/eurompi2012-tutorial
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